Grade 11 Term 1 Topics

These are the major term 1 topics as listed in the Grade 11 Physical Sciences <u>ATP document for 2023/2024.</u>

Remember: your school may do topics in a different order or in different terms.

Topic	Physics or Chemistry	
Vectors	Physics	
Forces & free body diagrams	Physics	
Newton's Laws	s Laws Physics	
Electrostatics	Physics	

Summary of topics compiled by Miss Martins

Qualified Physical Sciences and Maths teacher.

Information obtained from the 2023/2024 annual teaching plans accessed at:

https://www.education.gov.za/Curriculum/NationalCurriculumStatementsGradesR-12/2023ATPsFET.aspx

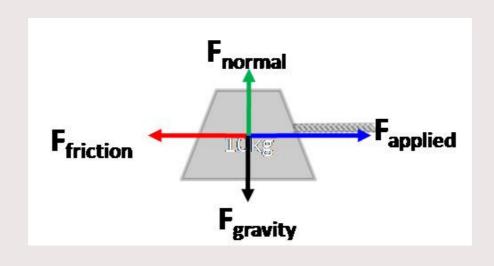
STUDY GUIDES FOR PHYSICAL SCIENCES?!

Visit my websitte

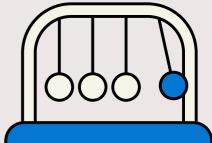
www.missmartins.co.za

https://www.missmartins.co.za/copy-of-resources

CHANNEL: MISS MARTINS MATHS AND SCIENCE


VECTORS

SUB-TOPIC	FORMULAE/THINGS TO KNOW	
Define a vector and a resultant vector		
Determine the resultant of vectors in one dimension		
Oetermine the resultant of vectors in two dimensions -use Rythagoras (magnitude) and trig (for direction)		
Determine the resultant of vectors graphically (head to tail method) and by calculation		
understand and work with closed vector diagrams and objects in equilibrium		
Resolve a vector into its horizontal and vertical components using trig and work out a resultant		


FORCES & FREE BODY DIAGRAMS

SUB-TOPIC	FORMULAE/THINGS TO KNOW	
Define normal force, frictional force, weight		
calculate static friction and Icinetic friction	$f_s^{max} = MsN$ $f_k = UkN$	
Know what affects (and does not affect) frictional force		
Resolve forces acting at an angle into components e.g. Fg11 and Fg1		
Draw force and free- body diagrams		

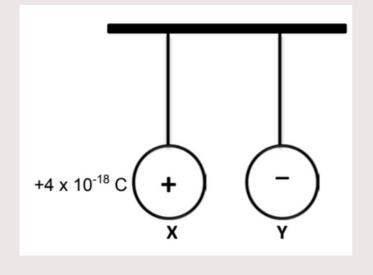
Sul

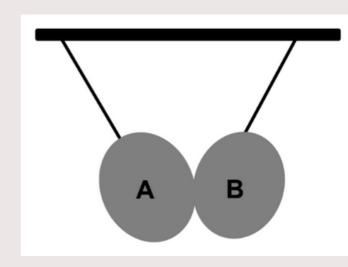
NEWTON'S LAWS

SUB-TOPIC	FORMULAE/THINGS TO KNOW	[
State Newtons First law of motion and understand inertia and importance of seatbelts	Fnet = 0	
State newtons second law of motion	Fnet = ma	
Draw force and free body diagrams		
Apply Newton's second law for a single object moving with/without friction on a flat surface incline / vertical plane		
Apply Newton's second law for two- body systems (objects connected) • both on flut horizontal surface; one on a surface, one hanging; both on inclined plane; both hanging		
State Newton's Third law of motion and identify Newton III force pairs		
State Newton's Law of Universal gravitation and calculate force explied by one body on another	$F = \frac{GM_1M_2}{d^2}$	
calculate acceleration due to gravity	g " GM	

DATA SHEET FOR

FORCES & NEWTON'S LAWS


Fref = Ma


$$f_s^{max} = \mu_s N$$

 $f_k = \mu_k N$
 $w = mg$
 $F = \frac{Gm_1 m_2}{d^2} \text{ or } F = \frac{Gm_1 m_2}{r^2}$
 $g = \frac{Gm}{d^2} \text{ or } g = \frac{Gm}{r^2}$

ELECTROSTATICS

SUB-TOPIC	FORMULAE/THINGS TO KNOW	
Revise electrostatics from grade 10 including conservation of charge and quantisation of charge and quantisation of charge coulomb's law and solve problems using the	$Q = \frac{Q_1 + Q_2}{2}$ $rge $	
(10 and 20) (UW	F = KQIQz	
Define an electric field and electric field at a Point		
Oraw electric field pattems		
Use E = FQ to determine the force exerted on a charged particle within an electric field	E = 1/Q	
calculate the electric field a point due to a number of point charges	$E = \frac{kQ}{r^2}$	

DATA SHEET FOR

ELECTROSTATICS

$$Q = Q_1 + Q_2$$

$$n = \frac{Q}{e} \quad \text{or} \quad n = \frac{Q}{Qe} = -1.6 \times 10^{-10}$$

$$E = \frac{KQ}{r^2}$$

$$E = \frac{F}{9}$$

$$V = \frac{W}{q}$$

